Mens et Manus

Simon

September 29, 2020

Using a Microprocessor in a Simple Electronic Device

In Lab 2, we introduced electronic design by using two pushbutton switches to control a two-color LED.

![Circuit Diagram]

This circuit provides red light when the left switch is closed and green light when the right switch is closed.

Using a Microprocessor in a Simple Electronic Device

In Lab 3, we put a microprocessor between switches and LED.

![Circuit Diagram]

→ more complex and potentially more useful behaviors
For example, the lights could flash and/or the buttons could toggle.

Simple Simon

Last time, we wrote a program to implement Simple Simon:

The game starts with a flash of red or green light (randomly chosen).
If red is flashed, the player should press button 0.
If green is flashed, the player should press button 1.
If the response is correct, the controller flashes green four times.
If the response is wrong, the controller flashes red four times.
Then the cycle repeats.

Today we will write a program to turn four switches and four LEDs into an electronic game: Simon.

Reflection on Last Week

One way to code Simple Simon is to enumerate all possibilities.

![Flowchart]

loop

→ more complex and potentially more useful behaviors
For example, the lights could flash and/or the buttons could toggle.
Enumeration

Enumeration is fine for Simple Simon, since there are just two possible outcomes: i.e., there is either one red flash or one green flash.

However, there are many possible sequences in each iteration of Simon. Here is the algorithm:

- **Choose** a challenge sequence \(c \) of four random integers \(\in \{0,3\} \).
- **Play** the challenge sequence \(c \):
 - flash green light from LED \(c[0] \), then \(c[1] \), \(c[2] \), and finally \(c[3] \).
- **Wait** for user to enter a response sequence \(r \).
 - If \(c == r \), flash green light from all LEDs four times.
 - If \(c != r \), flash red light from all LEDs four times.
- Repeat this cycle.

Module Design

This flowchart illustrates a high-level view of the Simon algorithm.

Our goal is to structure the code with corresponding modularity.

Simon

The first abstraction is to create a challenge \(c \) and issue it.

```c
void issue_challenge(int c[4]) {
    int i;
    for(i=0; i<4; i++) {
        // there are four trials in each challenge
        c[i] = random(0,4); // each trial = randomly selected position c[i]
        led_green(c[i]); // turn the LED at position c[i] green
        led_off(c[i]); // turn the LED at position c[i] off
        delay(200);
    }
    // on return, c[] will contain the challenge
}
```

Get the player's response \(r \).

```c
int get_one_button()
{
    int i;
    while(1)
    {
        // loop over buttons
        for(i=0; i<4; i++){
            if(analogRead(button[i]<128){
                led_green(i); // light LED to let player know
                delay(100); // wait for 0.1 seconds
                // REPLACE THIS LINE by code to wait for button[i] to be released
                led_off(i);
                delay(100); // turn off LED
                return i; // return the position of the pressed button
            }
        }
    }
    return;
}
```

```c
void get_response(int r[4]){
    int i;
    for(i=0; i<4; i++){
        r[i] = get_one_button();
    }
    // on return, r[] will contain the response
}
Simón

Determine feedback f and issue it.

```c
void give_feedback(int c[4], int r[4]) {
 int i, j, f;
 // REPLACE THIS LINE by code to set f = 1 if response r is correct else 0
 delay(400);
 for(j=0; j<4; j++) {
 for(i=0; i<4; i++) {
 if(f) {
 led_green(i);
 } else {
 led_red(i);
 }
 }
 }
 delay(100);
 for(i=0; i<4; i++) led_off(i);
 delay(100);
}
```

Breakout Groups

We will divide up now to work in small groups to work on this week’s projects, which are described under the week 5 lab tab:

http://mit.edu/6.a01

Write a Program to Implement Simón.

- Upload a video to demonstrate the Simón game.